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ABSTRACT

17

Two methods are presented in obtaining interval estimates for the finite population mean and the mean of the
distribution that generates the finite population when selection bias is present. Selection bias, which usually
results from the sampling design or procedure, occurs when the sample is not representative of the population.
A sample is obtained using Poisson sampling. The two methods considered are non-ignorable methods in the
sense that they both use the sampling design information in computing for the interval estimates. The
methodology proposed by this paper uses a Bayesian predictive approach. The two methods are compared in
.terms of accuracy andprecision.
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r, INTRODUCTION

The use of model-based procedures on survey data has been examined closely in
recent years because of the observation that a model holding for a sample may be completely
different from the model holding for the population. This inappropriate analysis may lead to
selection bias, which occurs when the sample is not a good representative of the population,
and thus, two different models hold for both sample and population. The selection bias will
most likely result to misleading conclusions. Weighting has been suggested to compensate
for this difference although model-based analysts consider weighting to be completely
unnecessary while those who advocate design-based. analysis include these weights in every
analysis.

As statisticians begin to realize the advantage in each of these two viewpoints, the
concept of an ignorable design is defined. Rubin (1976) and Sugden and Smith (1984)
discuss some sampling designs or situations which may be considered ignorable. They also
express, in terms of joint densities when a design or scheme is ignorable. An example of an
ignorable sampling design cited as Case B in Krieger and Pfeffennann (1992) is one in which
a sample is selected with probabilities proportional to ZI with replacement such that at each

draw k =1,2,...,n, Ttl =P(i e s) = ~I • The data known to the analyst are {Yl'zl'i e s}
L1=tZl

and {zlI+P""ZN}' With some minimal assumptions about the correlation betweenY and Z,

the MLE may be obtained.
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Pfeffennann (1993) discusses the matter of weighting ~ modeling survey data.
Although his suggestions in this paper are numerous, his general conclusion is that weighting
can be used to test and protectagainst:

I. informative sampling designs and
2. misspecification of the model holding in the population.

Krieger and Pfeffennan (1992) consider two designs, D1 (pps with replacement) and
D2 (stratified sampling) and the models that result from them. The usual maximum
likelihood and weighted maximum likelihood estimators are computed in simulated
examples. They note that the weighted maximum likelihood estimators perform well when
the relationship between the sample selection probabilities and sample data is expressed
correctly.· .

This issue is addressed well by Chambers, Dorfman and Wang (1998) where they
express the sample selection probability as a function of some covariate. .In fact. they give a
generalization of D I used by Krieger and Pfeffennann (1992). The model that this paper
develops uses this specification of sample selection probabilities. However, as both
previously mentioned papers use variations on maximum likelihood estimation, the approach
used in this paper is Bayesian.

In this paper. we consider the fmite population of size N: Y;,YZ .....YN generated by

N(IJ,crz). A sample of size n from this finite population will be selected via Poisson

sampling. In this scheme, we let /)l/z ,...,!N be Bernoulli random variables such that

I. ={I
1 0

if unit i is included in the sample

otheiwise

The sample selection probability for each ~ in the population given by P(It = I) = 7tt are

assumed to be known for all populations units. These sample selection probabilities 7tt

represent the probability that unit i with characteristic ~ will be included in the sample.

We would like to develop interval estimates for two parameters, the fmite population

mean Y and the superpopulation mean IJ. Since the design in use is non-ignorable, we use
the model developed by Pfeffennan, Skinner. Holmes. Goldstein and Rasbash (1998). and we
use some of the specifications used by Chambers. Dorfman and Wang (1998) in a Bayesian
predictive model. The results of these two methods will be compared on simulated examples
with different degrees of selection bias. This selection bias results from the non-ignorability
of the sampling design. We also observe that the selection bias increases with the increase of
coefficient of variation given by

. cr
cv=-xlOO%.

IJ
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2. BAYESIAN INFERENCE

19

The framework that we use for this paper is Bayesian. This means that the parameter
of interest S which may be vector-valued, will have an assumed probability distribution
called the prior distribution, denoted by p(S). We denote the information obtained from the
sample by y. The likelihood is a function of the parameter for fixed data and is denoted by
hiS) as a function of S. The probability distribution of S utilizing the information from the
sample is called the posterior denoted by 7t(S[y). The posterior is expressed below in its
unnormalized form:

1I'(8Iy) DC p(8 )f(y 18).

'Thus, the conditional distribution of the parameter of interest S is proportionalto the product
of the prior and the likelihood. All information for inference thus resides in the posterior.

To summarize the information obtained from the data about the parameter of interest,
samples are obtained from the posterior. After obtaining a large enough sample from the
posterior, summary statistics and intervals are computed. For example, if we wish to obtain
the bounds of a 95% interval, the 2.5th and 97.5th percentiles are identified from the ordered
values sampled from the posterior. It is appropriate to state that the probability that S will be
in the interval is equal to 0.95. In cases where the posterior is not a properly defined
probability density function, Markov chain Monte Carlo methods enable us to obtain samples
from it. The intervals that result from a Bayesian analysis are called credibleintervals. If
available, the shortest credible interval, which may be considered the best, is called the
highest posterior density (HPD) interval.

3. PFEFFERMAN'S METHOD

The first method we use to compute interval estimates is due to Pfeffennan, Skinner,
Holmes, Goldstein and Rasbash (1998), also from Krieger and Pfeffermann (1992), which is
why we refer to it as Pfeffermann's Method in this paper. This method uses sample
information and sample inclusion probabilities. For Pfeffermann's method, we assume that
~-N(J.1, 7t jci). We also assume flat priors for the parameters that generate the observations:

2 1
P(p,u ) <X -2'

. (1

As assumed earlier, the sample inclusion probabilities 7tj are known for all population units.
Then, the point estimate for both the finite population mean Y and the superpopulation mean
J.1 is given as

~tl y;
p _ LJi=l Wi

- ~,~ -1
~i=l1rJ
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The HPD intervals for both parameters are available in this case. A (l-a)IOO% HPD interval
for the mean ~ is

A (I-a)100% HPD interval for the finite population mean Y is

The requirements to implement these interval estimates are the sample values and the
complete set of sample selection probabilities.

4. 18AYESIAN PREDICTIVE MODEL

In tliis section, we develop a Bayesian predictive model to compute credible intervals
for the two parameters of interest earlier identified. A sample of size n is obtained via
Poisson sampling from a finite population of size N generated by a Normal distribution with
mean ~ and variance crz. Sample inclusion probabilities for all population units are known.
This is not the limited information situation considered by Chambers, Dorfman and Wang
(1998) but we utilize the relationship indicated in their paper between a latent variable Uj and
the sample inclusion probabilities 1tj such that

7ri ex Vi, i = 1", . , N.

We specify this relationship as
nlli

11".' = -
Nii

where

We then relate these latent variables to the observations through the model

Vi = f30 + .81Yi + ~, i = 1,,, . ,N

such that eM: '" N(O,a;). Another constraint incorporated into this model is that the sum of
all the sample inclusion probabilities is equal to the sample size n. That is,

This constraint is adapted from Chambers, Dorfman and Wang (1998) and Nandram and
Sedransk (2001). The former justifies the use of this restriction by noting that any reasonable
sampling scheme should have this property.
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We may also express latent variables as

(1)

21

Ci = N7Ti
where n As seen from above, since 0 < 1t1 ~ 1, either all Vi'S are all positive or all

negative. We take the case where all of them are positive and this is a second constraint that
will be imposed on the model. That is,

Vi > 0 for all i (2)

Also, for identifiability reasons we let J3o=l, as in Nandram and Sedransk (2001). As
for the priors assumed for the parameters J3t, fl, ~ and ~e, we took a non-informative for

.(J3t, u) and proper diffuse priors for cr-2 and cr-2e such that virtually no information is assumed
about them. The priors are given as

~ ~a- ..... r(a/2 ,a/2), a;"" r(o/2,o/2)

where a is a very small positive number such as 0.002.

In order to impose the constraints (1) and (2), latent variables 4>il i = 1,... ,N are defined such
that

q,i =Vi - Ciii• i = 1.2,,, .•N - 1

4JN =ii

The joint distributions for these variables are then obtained and to impose the constraints, we
let tPl = 0 I for i = I,,,,,N-I and tPN> O. We note that if we let all tPl = 0, for i = I, ... ,N-I,

then VI =ci V for the given range of i. Also, if tPN > 0 then v>0 which implies that all VI'S

must be positive.

The joint density of all parameters of interest given the sample data with the
constraints imposed is given by

1 -~(tP.v-(Po+,9.y»)2

2 'J J2tr ill! . 1 .
1r(q,N,IJ,fll,a ,a;.Y IY)O( • -....(--.....)--- x ( ")"'1_' x

.....>5 ""fj q) PO+Plf ae -r
;;;rv'1r

-:b1. 1(A:!+P. I')-,,(,(lo+P. 5')+(1-")(~.v -(fJo+P. pm' (J+J)( 1(Po+P. 5')-"(A:!+P. f"»+( 1-" )(~.v -(A:!+P. f)llf! 2&7-. ~ """ .,.., ,.. 1 ,..,...... ....,..,

Iv"II 7 1 ,e-~\'i-p)2 x (~)Q/2-le_/2a2 x ( 1:l)Q/2-le-Q/2a~.
i=1 v2lra2 tr a;,

where <!>(~o +~J is the usual cumulative standard normal probability and Y and Y are
(Je / N ,-3 -113

the sampled and non-sampled population units respectively. We note that the fA's disappear
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because all except for tPN were equated to zero to impose the constraints. The details of the

derivations of this posterior and the conditional posterior densities are given in Burgos
(2002).

Samples are obtained from the joint posterior

by sampling from the following conditional densities using Metropolis steps:

1T(11210'~, P ,.Bl! Ya)...

Sampling from the conditional densities of y '~1 and o~ utilizes the Metropolis-
-lIS

Hastings algorithm (Chib and Greenberg, 1995). We sample from these conditional densities
and the Metropolis steps ensure. that the sampled values indeed come from the given
distribution via a rejection step. Samples from the conditional density of ~ N uses a step
prescribed by Devroye (1986).. This ensures that the value of ~N is greater than zero, which
is one of the two constraints imposed on the model. Sampling from the conditional densities
of I.l and 0

2 is straightforward.

S. SIMULATED EXAMPLES

We wish to compare the performance of the two aforementioned methods whenever
selection bias is present Enumerated below are the simulation steps performed for each
example.

1. Generate a population of size N from a N(20,02) population.
2. From the population values, compute values of \)/ such that

Vi = /30 + /31l'i + et, i = 1", . ,N

where ~o =.13. =1 and eM~ '" N(O,(1~) where o~ =10.

3. Compute the sample inclusion probabilities from using the u, 'so
4. Draw the sample via Poisson sampling.
5. Compute intervals for the two parameters for Pfeffermann's method.
6. Sampling from the joint posterior density uses 11,000 iterates with a 'bum-in' of

1,000. That is, the first 1,000 iterates are deleted to wash out the autocorrrelations
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and every tenth iterate remains out of the remaining 10,000. The remaining 1,000
consist of the sample from the joint posterior.

7. The 2.Sth and 97.5th percentiles are used to define the upper and lower limits of he
interval estimates for the parameters of interest.

The examples given in Table 1 use two sets of population size N and sample size n.
The sampling fraction, however, is constant at 5%. The value of (12 starts at 1 then is
increased to 100 then to 400 to have values of cv equal to 0.05, 0.5 and 1. With the
increase in cv, selection bias also becomes more severe. It would be interesting to note
which method performs better under extreme selection bias. In Table 1, FPM is the finite
population mean for the example, HT is the Horvitz-Thompson estimator, Ys is the sample

mean, BP is the symbol for the Bayesian predictive model while PF stands for
Pfeffermann's method. The two parameters of interest are FPM and u , which is the mean

of the Normal distribution that generates the population. In our examples, this value is
20. SE is the standard error of the estimate while the interval estimate is given in the last
column. An accurate interval estimate contains the value of the parameter it estimates
and a precise one does it with the least interval width.

Table 1. Comparison of Estimators at 5% Sampling Fraction

cI N n FPM HT Y1
Mdl Par Mean SE Interval

1 200 10. 19.92 19.19 20.21 BP FPM 19.12 0.69 (17.74,20.21)

I.l 19.12 0.69 (17.74,20.21)
PF FPM 20.16 0.35 (19A7,20.84)

u 20.16 0.35 (19A5,20.86)

1 400 20 19.92 20.21 20.11 BP FPM 19.45 0.42 (18.30, 20.03)

I.l 19.45 0.42 (18.31,20.02)
PF FPM 20.12 0.17 (19.77,20.46)

u 20.12 0.18 (19.76,20A7)
100 200 10 19.89 20.37 28.02 BP FPM 20.30 1.03 (18.21,22.38)

fl 20.29 1.09 (18.19,22.50)
PF FPM 25.08 3.24 (18.70, 31.47)

u 25.08 3.35 (18.50,31.67)
100 400 20 20.05 19.43 24.82 BP FPM 19.38 0.78 (17.86,20.99)

I.l 19.38 0.80 (17.85,21.01)
PF FPM 20.40 2.39 (15.68,25.11)

u 20.40 2A5 (15.55,25.24)
400 200 10 20.89 20.74 29.87 BP FPM 19A5 0.90 (17.68,21.23)

I.l 19.46 0.98 (17.58,21.47)
PF .FPM 21.34 5.27 (10.97,31.71)

u 21.34 5.42 (10.69,31.99)
400 400 20 18.25 16.95 30.16 BP FPM 19.02 0.65 (17.76,20.35)

I.l 19.01 0.72 (17.65,20.35)
PF FPM 20.39 3.60 (13.29,27A8)

u 20.39 3.71 (13.07,27.71)

The selection bias is practically non-existent in the case where cv is small, that is,
f:i=1. The sample mean is close to the values of J.1 and FPM. This means that the units
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included in the sample represent those in the population. Both models perform well because
they both contain the values of the parameters. However, as the value of cv increases, there
is a marked increase in the sample mean compared to the two parameters. This means that
larger values are entering the sample producing an unusually large sample mean. The two
methods produce intervals that are accurate yet, in examples where selection bias is severe
(0

2=400), those produced by Pfeffermann's method are much wider compared to those
produced by the Bayesian predictive method. This means that the Bayesian predictive
method produce smaller standard errors compared to Pfeffermann's method only under
extreme selection bias.

Since the results for the simulated examples are interesting, we simulate 200 more
examples for the cases where selection bias is severe, that is, cv =0.5 and .
cv = 1.

Table 2. Summary of 200 Simulated Examples for Each Case

PF BP
Coveraze Width Coveraze Width

a. N = 200, n = 10, cr=100

f..l 0.315 4.081608 0.95 4.036
FPM 0.295 3.8184 0.965 3.8393
b. N = 400, n = 20, cr=100

f..l 0.23 2.5381 0.95 2.9297
FPM 0.31 3.2438 0.95 2.8524
c. N :::;: 200, n = 10, cr2=400

J..I. 0.795 20.272 0.95 3.9909
FPM 0.805 20.014 0.95 3.8112
d. N =400, n = 20, cr=400

f..l 0.285 5.623 0.95 2.9427
FPM 0.04 5.1356 0.955 2.7435

Note: Width is the average width of the 200 95% credible intervals for the two
parameters; Coverage is the proportion of intervals containing the true value of the
parameter out of the 200 simulated examples.. .

In the 200 simulated examples for all cases, the Bayesian predictive (BP)
method attains the required accuracy while Pfeffermann's (PF) method does not reach
this level. In the cases where selection bias is severe (cv = 1), BP produces
significantly shorter intervals than.those produced by PF.

6. CONCLUSIONS

In this paper, two non-ignorable methods for obtaining interval estimates for the finite
population mean and the mean of the generating function for the population are examined.
Although both utilized sampling design information in obtaining these estimates, the method
proposed in this paper uses Bayesian predictive inference. It also incorporates two
constraints, given as (1) and (2) in Section 4, which contributes to the precision of the BP
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method under severe selection bias. Also, the BP method attains the required level of
accuracy which the PF method was unable to do.

This paper shows the greatpotential of the Bayesian method when used with samples
selected using non-ignorable sampling designs. Although, it is still not easy to identify
situations where selection bias is present, the Bayesian predictive method introduced in this
paperattempts to correctthisproblem whileproducing precise interval estimates.
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